The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production.
نویسندگان
چکیده
Methyl jasmonate (MeJA) elicits stomatal closing similar to abscisic acid (ABA), but whether the two compounds use similar or different signaling mechanisms in guard cells remains to be clarified. We investigated the effects of MeJA and ABA on second messenger production and ion channel activation in guard cells of wild-type Arabidopsis (Arabidopsis thaliana) and MeJA-insensitive coronatine-insensitive 1 (coi1) mutants. The coi1 mutation impaired MeJA-induced stomatal closing but not ABA-induced stomatal closing. MeJA as well as ABA induced production of reactive oxygen species (ROS) and nitric oxide (NO) in wild-type guard cells, whereas MeJA did not induce production of ROS and NO in coi1 guard cells. The experiments using an inhibitor and scavengers demonstrated that both ROS and NO are involved in MeJA-induced stomatal closing as well as ABA-induced stomatal closing. Not only ABA but also MeJA activated slow anion channels and Ca(2+) permeable cation channels in the plasma membrane of wild-type guard cell protoplasts. However, in coi1 guard cell protoplasts, MeJA did not elicit either slow anion currents or Ca(2+) permeable cation currents, but ABA activated both types of ion channels. Furthermore, to elucidate signaling interaction between ABA and MeJA in guard cells, we examined MeJA signaling in ABA-insensitive mutant ABA-insensitive 2 (abi2-1), whose ABA signal transduction cascade has some disruption downstream of ROS production and NO production. MeJA also did not induce stomatal closing but stimulated production of ROS and NO in abi2-1. These results suggest that MeJA triggers stomatal closing via a receptor distinct from the ABA receptor and that the coi1 mutation disrupts MeJA signaling upstream of the blanch point of ABA signaling and MeJA signaling in Arabidopsis guard cells.
منابع مشابه
Roles of AtTPC1, vacuolar two pore channel 1, in Arabidopsis stomatal closure.
Abscisic acid (ABA) induces production of reactive oxygen species (ROS) and nitric oxide (NO), elevation of the cytosolic free calcium ion concentration ([Ca(2+)](cyt)) and cytosolic pH (pH(cyt)), and activation of S-type anion channels in guard cells, causing stomatal closure. To investigate whether Arabidopsis Two pore channel 1 (AtTPC1) that encodes the slow vacuolar (SV) channel is involved...
متن کاملThe Arabidopsis calcium-dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signaling in guard cells.
Previous studies have demonstrated that methyl jasmonate (MeJA) induces stomatal closure dependent on change of cytosolic free calcium concentration in guard cells. However, these molecular mechanisms of intracellular Ca(2+) signal perception remain unknown. Calcium-dependent protein kinases (CDPKs) function as Ca(2+) signal transducers in various plant physiological processes. It has been repo...
متن کاملCytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure.
Signaling events during abscisic acid (ABA) or methyl jasmonate (MJ)-induced stomatal closure were examined in Arabidopsis wild type, ABA-insensitive (ost1-2), and MJ-insensitive mutants (jar1-1) in order to examine a crosstalk between ABA and MJ signal transduction. Some of the experiments were performed on epidermal strips of Pisum sativum. Stomata of jar1-1 mutant plants are insensitive to M...
متن کاملArabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses.
Experiments with several Arabidopsis thaliana mutants have revealed a web of interactions between hormonal signaling. Here, we show that the Arabidopsis mutant radical-induced cell death1 (rcd1), although hypersensitive to apoplastic superoxide and ozone, is more resistant to chloroplastic superoxide formation, exhibits reduced sensitivity to abscisic acid, ethylene, and methyl jasmonate, and h...
متن کاملThe ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in Arabidopsis guard cells.
Stomatal guard cells control CO(2) uptake and water loss between plants and the atmosphere. Stomatal closure in response to the drought stress hormone, abscisic acid (ABA), results from anion and K(+) release from guard cells. Previous studies have shown that cytosolic Ca(2+) elevation and ABA activate S-type anion channels in the plasma membrane of guard cells, leading to stomatal closure. How...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 143 3 شماره
صفحات -
تاریخ انتشار 2007